
REPORT DOCUMENTATION P1 AD-A274 694 ,.,
fk en"*4 Wd"u coihetug of Waoraugfm, -s "44sat" to aveeq I ko cU* E U U

suwhd.Ag to, N• .* Ath•or -***Vb . to WMnAeqnoA *W UofEEEIE
Ocvi, *•lw•. IS't* 1ti0d. AIIM9Io. v& U0O&4 6J. cii to the Office of Mioi~q•.uflt ..sd31

1. AGENCY USE ONLY (Leave bnkd) 2. REPORT DATE a. Ktruno tre jnw UMSKJ %.iJVnat

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

PDEF: A Standard File Format for Data Interchange

G. AUTHOR(S)

Michael McDonnell

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) e. PERFORMIXG ORGANIZATION
U.S. Army Topographic Engineering Center REPORT NUMBER

ATTN: CETEC-PAO
7701 Telegraph Road R-203
Alexandria, VA 22310-3864

9. SPONSORING IMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/IMONITORING
AGENCY REPORT NUMBER

XXC

12a. DISTRIBUTIONI AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Introduction
The Protean Data Exchange Format (PDEF) is a set of computer programs which can be

used to transform data between different systems which do not understand each other's for-
mats. The problem of data transformation is not restricted to any particular .,SCIPline, but
those of us concerned with digital terrain data have felt this problem acutely as we have found
that different Geographic Information Systems (GIS) cannot use each other's data. Although
PDEF was written to alleviate this particular problem, its uses are mome general than the spe-
cific problem for which it was originally written. PDEF was designed primarily to be easy to
use since reformatting decisions must be made by people. This report will examine both the
format and the uses of PDEF.

14. SUBJECT TERMS IS. NUMBER OF PAGES

10
Data Exchange, Data Transformation, Geographic Info Systems, I. PRICE CODE
Reformatting

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION it. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unclassified unclassified unclassified

NSN 7540-01-280-5500 Standard Form 296 (Rev. 2489)
P-trwrbtor ANS Sid ~IE *I.
li..tga

V

PDEF: A SThNDARD FILE FORMAT
FOR DATA ITER-EANGE

Michael McDonnell
U.S. Army Topographic Engineering Center

Fort Belvoir, VA 22060-5546

Introduction
The Protean Data Exchange Format (PDEF) is a set of computer programs which can be

used to transform data between different systems which do not understand each other's for-
mats. The problem of data transformation is not restricted to any putcular discipline, but
those of us concerned with digital terrain data have felt this problem acutely as we have found
that different Geographic Information Systems (GIS) cannot use each other's data. Although
PDEF was written to alleviate this particular problem, its uses are more general than the spe-
cific problem for which it was originally written. PDEF was designed primarily to be easy to
use since reformatting decisions must be made by people. This report will examine both the
format and the uses of PDEF.

This report is intended for both programmers and non-programmers who need to under-
stand data formats and data format transform techniques. Programmers can find sufficient
detail in the appendixes to implement PDEF. Programming examples are given there for vari-
ous data types, such as raster, quadtree, and vector data. Non-programmers will find guidance
in the body of the report on how to express their data-reformatting decisions in PDEF so that
PDEF will reformat the data properly.

To understand PDEF, we need a brief review of data file formats. A file is a separate
data entity on a disk or tape. It has its own name on a disk and is separated from other files on
a tape by an end-of-file mark. Some files are further subdivided into records and fields.
PDEF does not use any subdivisions finer than files. There are. no records or prescribed fields
defined in PDEF.

Data is commonly stored and transferred from one computer to another by using conven-
tions in the formatting of the file, or files, containing data. It is common to have a header as
the first part of a file. The header contains data about the file as a whole, such as the name of
the data set, and also contains format information to help in reading the rest of the file. Head-
ers typically contain a mixture of printable and binary data and are difficult to parse (i.e.
understand) without a manual. There are no headers in PDEF. The rest of this introduction
gives the rationale for the design of PDEF.

Designing a new data format (And implementing tools such as parsers to allow people to
\iork with it) is a large undertaking and should only be done if there is a strong need. Is there,

, %then, a good reason for defining PDEF? One reason is the influence of old formats and old
ft }languages such as FORTRAN. FORTRAN has dominated the design of file formats to date

#ft -ind causes many of the problems users have when attempting to understand and work with a
Um current format.
O M FORTRAN cannot allocate data dynamically. This lack of dynamic allocation forces

IN dam file formats to have fixed field lengths, which causes some problems. For example, if a
R user wants to name a file using a tide that is 20 letters long but the data file has only set aside

W [[15 spaces for the name, then the desired filename must be shortened to a length of 15 letters
or less. Carried to extremes, this leads to names for functions and variables that are restricted

S1 94 1 14 068

to a few upper-case ASCII characters and therefore have almost no semantic content. What
does a function named SAXPY or QRTPE do? There is no way to tell without a manuaL
Similarly, and more to the point of this discussion of data formats, what data does field
FTLLP contain? Again, there is no way to tell.

A problem encountered when dealing with many current data formats is a waste of space
on data transfer media. If fixed-length fields have to be made large enough to contain the
largest expected data element, then for an average data element there will be unused space
that must be transferred on the tape anyway. Attempts to overcome this limitatien, such as the

ISO 8211 data transfer standard, have a daunting complexity. The author has recently writ-
ten a parser for ISO 8211 and it was a difficult task.

Another problem with most current formats is that they were designed by committees
and therefore have a lack of conceptual integrity and an unnecessary complexity which is
characteristic of such works. A- an example, the proposed spatial data transfer specification
which has been published by the Digital Cartographic Data Standards Task Force (DCDSTF)

has a specification that is over 120 pages long. 2 Such specifications as DCDSTF are unwork-
ably complex and will have to be changed later, leading to problems with versions of the
"standard." In contrast, PDEF is simple. This simplicity is mostly a result of separating syn-
tax from semantics, as will be illustrated later. Simplicity and human-readability were the
guiding precepts in its design. However, simplicity must not be sacrificed to usability or use-
fulness. PDEF proves that a format can be both simple and useful.

A GENERAL DESCRIPTION OF PDEF

In PDEF a single data set is typically stored in several separate files, with (mostly) meta-
data in those files that are readable by people. Meta-data is data about data. It includes such
information as where the data is found, how many bits there are per data element, and whether
data is to be read as a string of characters, as an integer, as an array of 32-bit floating-point
numbers, etc. Although most current file formats contain such informatiohi in a file "header,"
PDEF has no file headers. In PDEF, a separate, human-readable file contains the meta-data
typically found in headers. The bulk of the data is then placed in another file or set of files
that contain nothing but binary data. Binary data files have the following characteristics:

Ptar

IInformaton Processing - Spec~fwcadion for a data descripvefile for informadon inerchange, Intmnstion. -
al Organization for Standardization publication IS0 8211-1985ME) 15 Dcc 1985.0

2 Digital Cartoraphc Data Sntanad ihak Foice, "Draft Proposed Stadard for Digita Cartgraphic Dataet
The American Cartographer, vol. 15, p. 21.

AD

D'rIC WAUALTX INWW= b!DcYZNDI -

A.Dit U eb alt
2&s .'.

*

" no headers
"* no trailers
"* no field padding
"• no field separators (at least none required)

in short, no wasted space. With the exception of a defined field separato, these characteristics
are also true of meta-data files, which I will call informaion files from here on.

The issue of human readability needs to be discussed. Why is it desirable to have data
files be readable by people? Are there penalties to be paid in computewr efficiency or in stor-
age usage if human-readable information files are used?

A benefit of human-readable information files is that a manual is not needed to under-
stand something about a data set. It frequently happens that a data set is presented to a poten-
tial user without any accompanying documentation. Therefore, understanding something
about the data without referring to auxiliary documentation is often useful, and can even be
crucial, since you can't read the data unless you know its formats.

Another benefit of human-readable information files is that it is easier to write a parser
for these files than if nonprintable data has to be dealt with. Appendix C illustrates parsing of
a SPOT3 data file using the fixed-field data that comes on the SPOT tape. Appendixes B, D,
and E illustrate parsing of the same file using a PDEF information file. You can see that the
parsing is much more understandable when using PDEF As illustrated in appendix D, It is
also possible to use the parsing tools ex4 and yacc,5 which are of great help in writing parsers.
While lex and yacc were created on Unix systems, they are now available under all major
operating systems such as MSDOS, OS/2, and VMS.

Human-readable files do take more storage on disk or tape than binary files of the same
data. For this reason, PDEF defines two types of files. The human-readable file is only used
for data that must be read to understand the data set as a whole. Its inefficient storage is not a
problem since binary data files are much larger than human-readable files for the large data
sets that PDEF w'as created to manipulate.

Having mentioned the possible usefulness of PDEF, the PDEF file formats will now be
described as will some of the software tools that manipulate them. The body of this report
describes the abstract characteristics of PDEF, which are simple, but file formats rely on a
consideration of detail. This detail is given in the appendixes which provide examples of pos-
sible uses of PDEF.

3 Formtfor the SPOT Image Corraton Compfer Compatible Tapes, SPOT Image Cpmw . Aug
1986.

SM. E. Lek and E. Schnid, "ULex - A Lexical Analyzr genawo in Unix rune-Sharing System: Una
Progammer's Manunl, Vol. 23 7th edition, AT&T Bell L&baaries. 1979.

s S. C. Johnson, "Yacc yet another compiler-compiler" in Unix Tame-Sharing System: Unix Progmauwer's
Manual, Vol. 26 7th ediWon, AT&T Bel L abrawries, 1979.

3

A large data set in PDEF consists of at least two separate files. One of these files is an
informaton file, which contains general information about the data such as file offsets and
how the data are to be parsed. Appendix B contains a PDEF information file for SPOT satel-
lite data. There is usually only one information file for a given data set. Besides the informa-
tion file, there is usually at least one binary data file. The information file format will be dis-
cussed first, followed by a discussion of the binary data file format.

THE INFORMATION FILE

Information files consist only of printable ASCII characters. In the ASCII numeric
sequence, printable ASCII characters include characters' '(space) through '` (tilde) inclusive
and also include the hexadecimal characters OA (newline) for line breaks and 09 (tab) for
spacing. This is all in accordance with the C programming language practice of considering
"white space" characters to be among the printable ASCII set, where white space characters
are defined as space, tab, and newline. No other characters are allowed in information files.

An information file without nonprintable characters can be easily viewed without bom-
barding a terminal or workstation with what may be in-band control information, thus putting
it into undesirable states. No special programs are needed to view the information. Any pro-
gram that writes text data onto the screen is usable for viewing information files, and ordinary
text manipulation programs can be used to create or modify information files.

Information files have two reserved characters, the pound sign '#' and the colon ':'. The
pound sign character '#' indicates a non-parsable comment. Any characters on a line from the
first occurrence of a '#' until the end of the line (i.e. until a newline) are not read by the infor-
mation file parser. The other reserved character is the colon ':' which is used to separate a key
from the data associated with the key. Appendix A shows an example information file that
has been rather strangely formatted to show some of the possible uses of the '#' and ':' char-
acters.

The "key" is purposely not called a "keyword" because a "key" is a phrase that may con-
tain many words. Keys should be designed to be very descriptive. A poor key would be
cryptic such as "redoff," while an equivalent good key would be "file offset to beginning of
red image." Keys must begin a line. This means that either they must appear at the very
beginning of the information file or they must always follow a newline. Keys are separated
from the data to which they refer by a colon ':'. Leading and trailing spaces or tabs in a key
are ignored by the parser. See the comments in the information file in Appendix A for further
details.

Appendix A also shows how a single key may refer to a data structure rather than a sin-
gle data item. There the structure is a colormap which consists of a repeated sequence of
[pixel red green blue] values. Data structures can be defined in a PDEF information file too.
For example, there may be entries like this:

4

a#

establish how we encode a colormap

colormap sequence: red green blue pixel
color maximum value: 65536# for the X Window System
pixel maximum value: 255
colormap:

3456 12345 8976 0
12345 8974 3458 1
and so on ...

Other types of composite data, such as matrices or coordinate tuples, may be handled simi-

larly. Here is a possible representation of Quam's block storap of raster data,6 such as is
used for ARC Digitized Raster Graphics, a product of the U.S. Defense Mapping Agency.

Data type: raster # also vector, quadtree, etc.
Storage format: blocked # could be RGB, band interleaved, etc.
Block size: 128

and so on...

An example of how quadtrees may be encoded will be shown later. Appendix F presents a
design for storing vector and polygon data.

BINARY DATA FILES

It may be that a data set encoded in PDEF does not contain any binary data files what-
ever, all of the data being placed in the information file. This is only reasonable, though, for
small data sets. For large data sets, one or more binary data files should be used in addition to
the information file.

Binary data files contain data in which the largest guaranteed unit of reference is the
8-bit byte. The information file tells the user how to interpret these data bytes. Because of
the vagaries of byte ordering on different computers, the information file may specify how to
assemble larger data units from bytes. For example, data bytes may be read in the order 12 3
4, but a 32-bit integer formed firom these bytes may have to be written in the order 2 14 3.

Data ordering is a significant problem. The author uses the conventions described in Sun
Microsystem's eXternal Data Representation (XDR) standard for representing more complex
data types. XDR is explained in the document RFC1014 which may be gotten through the
Internet by ftp from nic.sri.com or by request from Sun Microsystems, Inc. Data type encod-
ing is, however, not enforced by PDEF and so will not be discussed here further.

6LI. Qum, "A Stage Reentaio for Effient Acces to Lopge Mulim al Amys, Proced-
inag DARPA Image Under'wmding Work.opp, 104-111, 1980.

5

Appendix E shows that a separate information file may be used to work with some data
format without reformatting it into an intermediate binary format. The programs in Appendix
E parse a SPOT file in its distributed format; headers in the SPOT data are just ignored. This
technique allows a common set of parsing and data manipulation programs to work on various
types of data without reformatting the data file itself. This is a significant advantage for large
data sets where reformatting the data would take much computation and use a large amount of
storage.

USE OF PDEF FOR DATA REFORMATTING

As mentioned in the introduction, nothing except valid data should be stored in binary
data files. If applicable, one may, of course, specify fixed-length fields, padding, headers, and
all the other apparatus found in various file structures. This flexibility has a use in that it is by
this means that data can be exchanged from one format to another. It is this problem, data
reformatting and exchange, that inspired work on PDEF (and is the source of the name pro-
tean).

The combinatorics of data reformatting mandate a common intermediate format. The
following table shows how the number of parsing programs needed is affected by the pres-
ence of an intrrmediate file format.

Table 1. Number of Parsing Programs Needed

parsing programs needed parsing programs needed
number of formats without PDEF with PDEF

8 56 16
9 72 18

10 90 20
100 9900 200

The relevant mathematics are that without a common file format one needs n(n - 1)
reformatting programs and with a common file format only 2n reformatting programs. Thus,
the first problem is of order n squared while the second problem is of order n.

The table doesn't tell the whole story, though. The programs that have to be written fall
into two equal-sized groups, which is where the factor of 2 in 2n comes from. Figure 1 shows
the situation. The programs that convert some other format into PDEF have a common back
end in that they all feed into PDEF. Similarly, the programs that convert from PDEF to
another format have a common front end that reads the PDEF file. When these commonalities
are considered, the problem simplifies further to essentially n programs instead of 2n pro-
grams. There is no doubt that an intermediate file format is needed if data reformatting
among many formats needs to be done.

6

Format 4 Format 4

.Format 5 Format S

Figure 1: Diagram of interchange among five data formats using PDEF as an
intermediate format. All data formats may be reformatted to PDEF and then
PDEF may be reformatted into any other format. The arrows represent pro-
grams that perform data reformatting and the rectangles represent the formats.

PDEF AS A PRIMARY DATA FORMAT

Besides serving as a means of reformatting data, PDEF can itself be a primary data for-
mat. This means that devices such as image scanners and telemetry systems can encode their
data in PDEF for transmission. The readability of PDEF information files then allows the
operator to quickly check data content. Software systems such as a GIS can also be based on
PDEF, thereby allowing easier conversion of data to and from foreign formats. The U. S.
Army Engineer Topographic Laboratories (EIL) will use PDEF as the format for data gener-
ated by the Terrain Information Extraction System (TIES), which is a developmental system
allowing Army units to extract terrain data from digital photography in the field.

TYPES OF DATA THAT MAY BE HANDLED

Current experience with PDEF has been only with regard to raster data files. In order to
be useful as a general data exchange file (i.e. in order to be truly protean), PDEF has to be
able to handle other data types and structures as well. An example relevant to ETL is GIS
data, which includes vectors (with associated attributes) and quadutes as well as gridded
(raster) data. Below is an example of a quadtree structure defined in PDEF. Although the fol-
lowing is not the only way to encode a quadtree in PDEF, it is an example meant to indicate
that PDEF is capable of doing this.

One way to store a quadtree on a disk or tape is to define a traversal order of the tree and
then to linearize the tree to a file by traversing it. To rebuild the e from the file, just build it

7

in the same order when the file is read. Here is a section of an information file dealing with
quadtrees:

Traversal order preorder
Quadtme node data order: attribute NW NE SE SW
Attribute: generic pointer
NW: boolean
NE: boolean

SE: boolean
SW: boolean

binary data file is just quadtrees, so offset is zero

Offset of root quadtre in data file: 0

Given this information, a parser program can go through the binary data file and add in
the nodes for which the boolean attributes of its father node are TRUE, meaning that there is a
node under this quadrant. This simple scheme defines leaf nodes as having all four quadrants
FALSE and with an attribute assigned to its area. Note that storage can be saved by encoding
the four leaf nodes in a single byte since they only need one bit each to perform their function.
Data descriptions, such as "boolean" or "generic pointer," can be further described by other
entries in the information file. Other needed data would certainly include geographic coordi-
nates of the comers of the region encoded in the quadtree. Individual quadtree nodes need not
carry their coordinates along with them since these are implicit in the tree.

Another data type of great interest to the GIS community is vector data. A realistic
design of a vector data format for PDEF is too big to be given in the body of this report; how-
ever, Appendix F contains an example design based on a United States Geological Survey for-
mat for vector and polygon data, such as is used in a GIS. All essential information such as
vector ordering is preserved.

GENERAL DISCUSSION; SYNTAX AND SEMANTICS

PDEF defines the syntax of a data exchange file format and not the semantics of such a
format. PDEF does not address some of the most difficult problems associated with reformat-
ting data, such as forcing a match between data fields that are not strictly conformable. If a
name field in one format has 30 characters allocated to it and another only allows 10 charac-
ters, how is a conversion to be made? Similarly, if needed data in some format is simply not
available in a precursor format, what defaults should be used to fill in the blanks in the output
format? Should they be filled at all? Problems such as these are matters of policy and are
therefore beyond the scope of PDEF because it is only a file formatting vehicle. However,
PDEF makes it easier to address these issues of reformatting policy.

8

For one thing, having a protean and human-readable format for information storage and
exchange means that those people charged with deciding the form of data storage or inter-
change can encode their decisions directly in the information file that is to be parsed by a
computer. This makes the data formatting readily and directly reviewable. There is no dan-
ger of a mistranslation between what the computer must read and what people can read since
information files can be read by both people and computers. Using the information file for
this purpose prevents such mismatches. It is best to avoid the production of auxiliary docu-
ments detailing formatting decisions since the PDEF information file and the , xiliary docu-
ment may disagree.

There are some concerns that need to be addressed which come from having a separate
file that includes the parsing information for binary data files. These concerns are as follows:

"* The information file may be separated from the data files to which it refers.
"* The information file is both too easy and too difficult to change. It is too easy to
change because it is a text file and can therefore be modified by a text editor so that it no
longer has accurate data. It is too difficult to change because a program may modify the
binary data without modifying the information file.

In general, a concern exists that there is too much decoupling between the information file and
the data it describes.

Although the information file may indeed be separated from the file it describes, many
current data formats make use of separate files and this does not seem to be a significant prob-
lem. SPOT and ADRG data are both distributed as sets of files for a single coverage area.
These files have a complex interrelationship that is much more difficult to work with than the
simple scheme described here. Since no documentation exists which relates operational prob-
lems caused by these sets of files becoming dissociated, this is probably more of a theoretical
than a practical problem.

Having the information file track the data file is a matter of convention that is not
enforced by the format itself. A reasonable convention is to have information files be pro-
tected so that they are read-only for users and can only be operated on by privileged pro-
grams. Data files can be treated in the same way. It is then the responsibility of programs that
modify the data to concurrently modify the information file. To be even more certain that
information files and data files are consistent, a given set of information and data files should
not be modifiable at all except under regulated circumstances. What is meant here is that if
the data set is to be modified, it must be copied to a new data set and a new information file
generated to describe it. This keeps a history of data processing information, which it is prob-
ably desirable to have anyway. Advances in data storage media have alleviated the problem
of storage of large data sets, and data can in any case be overwritten, if this is needed.

Pascoe and Penny have recently critiqued the problem of producing a standard inter-

9

7I

change format for GIS data. Since they do not start from the assumption that there can be a
separation of syntax from semantics for a data exchange format, they are led to the conclu-
sion, repeatedly stated, that any such standard must be very complex. Indeed, if all the deci-
sions about data semantics are considered, then the result is very complex. This report pro-
poses that the format of interchange may itself be very simple and can help with the more dif-
ficult policy problems concerning data reformatting.

Data for an output record in one format may have to be derived from a number of files in
some other format. This means that searching of several files must be done forihese cases to
generate a single output datum. Pascoe and Penny advocate reading all input data into a rela-
tional database management system (RDBMS) to distribute the data into a set of relations that
can then be searched, as needed, for outputting a new format.8 While this insulates the pro-
grammer from explicit searching for data, the redistribution of data may not be a frequent
occurrence, and the apparatus of an RDBMS seems unnecessary. This is certainly true of
raster data, which will be closely associated in any format and therefore does not have to be
redistributed. Pascoe and Penny mention the large amount of computer resources needed

when using an RDBMS; 9 file searching as needed should not impose as much of a burden.
Experience with PDEF will show whether it is an efficient means of transferring information
or whether an RDBMS is a needed adjunct. As mentioned above, much of the initial data
may be retained in the original format and only parsed out as needed. The goal should be to
do as little reformatting as possible.

SUMMARY AND CONCLUSIONS

PDEF provides a powerful, simple, and human-readable method of encoding data in a
form that is easily parsable by automatic computer methods. Since parsers are written in
yacc, they are expressed in a formal syntax grammar (Backus-Naur form) and are easy to
write and modify. PDEF is superior in simplicity and power to other formats and allows effi-
cient data storage. Owing to its simplicity, it is unlikely that future versions of PDEF need to
be designed. This ensures that there will not be outdated versions of PDEF that must be
accommodated in the future. PDEF does not have the disadvantages pointed out by Pascoe
and Penny for other data exchange formats and can serve as a much more tractable and pro-
tean standard than current formats.

7 R. T. Pascoc and J. P. Penney, "Construction of Interfaces for the Exchange of Geographic Data" Int. J.
Geographical Information Systems, voL 4, No. 2, 147-156, 1990.

9 Ibid.
9 Ibid.

10

